# Depright © Glencoe/McOnw-Hill, a division of The McGraw-Hill Companies, Inc.

# Standards Practice

### Gases and Their Properties

Read each question, and choose the best answer. Then, on your answer sheet, mark the answer choice that you think is best.

- Students know the random motion of molecules and their collisions with a surface create the observable pressure on that
  - 1. What causes the pressure on the inside walls of this container?



- A. charge of the gas molecules in the container
- B. temperature of the gas molecules in the container
- C. )collision of the gas molecules on the container
- D. weight of the gas molecules on the container
- 2. How do the properties of a gas differ from those of a liquid?
  - A. Gas molecules have a greater random motion than liquid molecules.
    - B. Gas molecules have less energy than liquid molecules.
  - C. Gas molecules have more mass than liquid molecules.
  - D. Gas molecules put more pressure on the walls of a container than liquid molecules.
- 3. What does the random motion of molecules and their collisions with a surface produce?
  - A. mass
  - B. phase change
  - (C) pressure
  - D. weight
- 4. What causes a balloon to hold its shape?
  - A random motion of gas molecules
  - B. collisions of gas molecules against a balloon's walls
  - C. weight of the gas molecules inside of the
  - D. energy held by each gas molecule within the balloon

- Students know the random motion of molecules explains the diffusion of gases.
- 5. Which causes the addition of a colored gas to change the color of all of the gas in a container?
  - A) diffusion
  - B. mass
  - C. pressure
  - D. temperature
- 6. Diffusion is the term used to describe the movement of one material through another. The diffusion of gases can be explained by
  - A. relative molar masses.
  - B. differences in volume.
  - C. evaporation.
  - D. random motion.
- 7. Which is an example of diffusion?
  - A disappearance of a puddle in sunlight
  - B. smell of a rotten egg across a room
  - C. filled balloon that shrinks over time
  - D. balloon that shrinks when it becomes cold
- 8. Which is not an example of diffusion?
  - A) boiling of water
  - B. smell of food cooking
  - C. colored gas moving throughout a room
  - D. poisonous gas leaking from an open container

# Capyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

## Standards Practice

### Gases and Their Properties



- Students know how to apply the gas laws to relations between the pressure, temperature, and volume of any amount of an ideal gas or any mixture of ideal gases.
- 9. Charles's law explains the relationship between the temperature and volume of a gas. Which graph best represents this relationship?











- 10. How are pressure and volume of gas related?
  - A) As pressure decreases, volume increases.
  - B. As pressure increases, volume increases.
  - C. As pressure decreases, volume decreases.
  - D. Pressure and the volume are not related.
- 11. Which of these decreases as a given volume of gas increases?
  - A. number of gas particles
  - B, temperature
  - pressure
  - D. kinetic energy
- 12. There are two containers of two different gases at the same temperature and pressure. Each statement below can be assumed except
  - A. when the temperature is increased, the volume of both containers will increase.
  - B. when the pressure is increased, the volume of both containers will decrease.
  - C. both containers contain the same number of gas particles.
  - when the pressure is decreased, the temperature of both containers will increase.

- Students know the values and meanings of standard temperature and pressure (STP).
- 13. Standard temperature and pressure (STP) helps scientists to
  - A) compare gases.
  - B. compare liquids.
  - C. calculate ionic charges.
  - D. calculate entropy.
- 14. Standard temperature and pressure (STP) occurs at
  - A. 32°P. K
  - B. 100°F-V
  - C. 273°F.
  - D. 373°E.
- Standard temperature and pressure (STP) occurs at
  - A. 273°C.
  - (B.) 273 K.
  - C. 0°F.
  - D. 100°F.
- Standard temperature and pressure (STP) occurs at
  - A. 76 atm.
  - B. 76 mm Hg.
  - C. 760 atm.
  - (D.) 760 mm Hg.
- Standard temperature and pressure (STP) occurs at

  - A. 14.7 atm. 1 atm B. 14.7 mm Hg. 760 mm Hg
  - C. 14.7 psi.
  - D. 14.7 torr.
- 760 TON

## Standards Practice

### Gases and Their Properties



### Students know how to convert between the Celsius and Kelvin temperature scales.

- 48. How do the units in the Kelvin scale and the Celsius scale compare?
  - A. The kelvin units are smaller than the Celsius units.
  - B. The kelvin units are larger than the Celsius
  - C. The units are equal for both scales.
  - D. The scales are 100 units apart.

BIGGER

Smmion#

inits

TAKE

00 = 0

- k = 273 19. What is the freezing point of water in kelvins? A. 32 K. 08 = 273K B. 100 K
  - C. 212 K
  - FREEZING POINT = 0°C D. 273 K
  - 20. What is 20°C in kelvins?
    - A. 253 K
    - B. 273 K
- K= 0C+273
- (C.) 293 K
- = 20 + 273
- 21. What is 100°C in kelvins
  - A. 32 K B. 100 K
- K= 00 +273
- C. 212 K
- = 100°C+273
- D. 373 K.
- 22. What is 0 K in Celsius?
  - A. -373°C
- or = K-273
- B.)-273°C
- = 0-273
- C. 100°C D. 212°C
- = -273
- 23. What is 100 K in Celsius?
  - A. −273°C
  - (B) −173°C
- 9 = K-273
- C. 0°C
- = 100 273
- D. 100°C

- Students know there is no temperature lower than 0 Kelvin.
- 24. The coldest temperature possible is called
  - A. absolute cold.
  - B. absolute freeze.
  - C. absolute nil.
  - (D.) absolute zero.
- The Kelvin scale
  - A. has larger units than the Celsius scale.
  - B. has units about half the size of the Fahrenheit scale.
  - C) does not have negative numbers.
  - D. is a theoretical scale only.
- 26. Which temperature is impossible?
  - A. 20°C
  - B. -20°F
  - C. 20 K
  - D. -20 K
- 27. Which temperature is impossible?
  - A. -273°C
  - B. −273°F
  - 273 K
  - D. 0 K
- At absolute zero.
  - A. the Fahrenheit scale ceases to exist.
  - B) no further heat could be removed from a
  - C. H<sub>2</sub>O is in the form of a liquid.
  - D. every substance must be in a gaseous CRYSTALS

# Depyight © Gleacos/McGraw-Hill, a division of The McGraw-Hill Companies. Inc

# Standards Practice

### Gases and Their Properties



- Students know the kinetic theory of gases relates the absolute temperature of a gas to the average kinetic energy of its molecules or
- 29. The kinetic molecular theory of gases explains the behavior of gases at the molecular level. All of these statements are part of this theory except
  - A. gas molecules experience completely elastic collisions.
  - B. all gas molecules have the same average kinetic energy at the same temperature.
  - C. gas particles are in constant, random motion.
  - gas molecules are incompressible.
- 30. Gas particles
  - (A) move faster as temperature increases.
  - B. move faster as temperature decreases.
  - C. move slower as temperature increases.
  - D. do not show a correlation between movement and temperature.
- 31. At higher temperatures, gas molecules
  - A. contract.
  - B. slow down in movement.
  - C hit the walls of the container harder.
  - D. hit the walls of the container softer.
- 32. At higher temperatures, gas molecules
  - A. slow down.
  - B.) exert more pressure.
  - C. have less energy.
  - D. have more organization.
- 33. At absolute zero, gas molecules
  - A. move slower than liquid molecules.
  - B. are converted to liquid molecules.
  - (C) show very little movement.
    - D. move in a straight line.

Students know how to solve problems by using the ideal gas law in the form PV = nRT.

Use the ideal gas law below to answer questions 34-38.

$$PV = nRT$$

- 34. What happens to the volume of a gas when the pressure is increased by a factor of 4 (assuming all other factors remain the same)?
  - A. It is reduced by a factor of 4.
  - B. It is reduced by a factor of 2.
  - C. It is increased by a factor of 2.
  - D. It is increased by a factor of 4.
- 35. What happens to the volume of a gas when the temperature is increased by a factor of 4, if all other factors remain the same?
  - A. It is reduced by a factor of 4.
  - B. It is reduced by a factor of 2.
  - C. It is increased by a factor of 2.
  - D) It is increased by a factor of 4.
- 36. What is the pressure produced by 1.0 mol O2 in a 22.4-L container at 273 K? Use

R = 0.0821 (L\*atm)/(mol\*K).

- A. 0.5 atm
- B) 1.0 atm
- C. 2.0 atm
- D. 4.0 atm



37. What is the pressure produced by 1.0 mol 0, in an 11.2-L container at 273 K? Use

R = 0.0821 (L\*atm)/(mol\*K).

- A. 0.25 atm P= NRT
- B. 0.5 atm
- C.) 2.0 atm
- D. 4.0 atm

38. What is the pressure produced by 4.0 mol O2 in a 22.4-L container at 273 K? Use

P = NRT

 $R = 0.0821 (L \cdot atm)/(mol \cdot K).$ 

- A. 0.25 atm
- B. 0.5 atm
- C. 2.0 atm
- D. 4.0 atm



# **Standards Practice**

### Gases and Their Properties



Use the table below to answer questions 39 and 40.

| Composition of Air by Gas         |                            |                          |
|-----------------------------------|----------------------------|--------------------------|
| Gas                               | Partial pressure<br>(mmHg) | Percentage in<br>air (%) |
| Nitrogen (N <sub>2</sub> )        | 594.0                      | 78.1                     |
| Oxygen (O <sub>2</sub> )          | 160.0                      | 21.1                     |
| Carbon dioxide (CO <sub>2</sub> ) | 0.3                        | 0.04                     |
| Water vapor (H <sub>2</sub> O)    | 5.7                        | 0.75                     |

39. In air, the partial pressures add up to

- A. 160.0 mm Hg.
- B. 594.0 mm Hg.
- C. 600.0 mm Hg.
- D. 760.0 mm Hg.
- 40. How does air illustrate Dalton's law of partial pressures?
  - A. Gases are necessary to make up Earth's atmosphere.
  - B. The amount of oxygen is 21.1 percent.
  - (C) The pressures of gases in air add up to 1 atm.
  - D. Percentages of the gases in air add up to 100 percent.
- 41. According to Dalton's law of partial pressures, the addition of a gas from one tank to gas in another tank will cause the
  - (A. pressures of the tanks to be added together.
  - B. pressure of the first tank to be subtracted from the pressure of the second tank.
  - pressures of the tanks to be multiplied together.
  - D. pressure of the first tank to be divided by the pressure of the second tank.



Distance traveled by Gas 1
Distance traveled by Gas 2  $= \frac{\sqrt{\text{(Molecular mass of Gas 1)}}}{\sqrt{\text{(Molecular mass of Gas 2)}}}$ 

- (A) one-fourth the rate of Gas 2.
- B. one-half the rate of Gas 2.
- C. two times the rate of Gas 2.
- D. four times the rate of Gas 2.
- 43. A tank containing 0.5 atm of oxygen gas is combined with a tank containing 0.5 atm of oxygen gas and a tank containing 2.5 atm of oxygen gas. What is the final pressure in the tank?
  - A. 0.5 atm
  - B. 1.5 atm
  - C. 3.5 atm
  - D. 4.5 atm